Synthetic Data: What, Why, and How?
It’s no secret that a comprehensive, well-labeled dataset goes a long way towards an effective Machine Learning solution, and while data collection is a large part of…
A Complete Guide to an Iterative Process for Data Cleaning
In this blog, we discuss how you can improve the data cleaning process through iteration and prioritization. You can also download a FREE data cleaning rulebook template.
Data Labeling Tools to Get Your Next ML Project to Production
What are the odds that your ML project will reach production? 13% or a little better than one in ten. In this blog, we provide you with considerations to tilt the odds in…
Final Stages: Choosing, Training, and Deploying a Machine Learning Model
The last steps left – choose, train, and deploy a model. In this post, we discuss considerations when ML scientists finalize their solutions.
Stretching your Dataset with Data Augmentation
Data augmentation is an effective way to address the shortcomings of a dataset. In this blog, we’ll discuss the basics of augmentation, and the common techniques…
Exploratory Data Analysis for your Dataset – Explained
EDA allows ML scientists to visualize datasets from many angles so they can make informed decisions about how to improve them. In this blog, we’ll discuss the fundamentals…
Data Annotation: The Meat and Potatoes of Machine Learning Part 2
Many people don’t consider all the problems that pop up during data annotation until they start annotating. In this blog, we’ll discuss solutions to those problems that…
5 Common ML Data Cleaning Problems and How To Solve Them
Though there’s no shortage of data today, most data needs quite a bit of work before it can be leveraged into machine learning solutions. In this blog, we discuss five common…
The Brave 1st Step of Machine Learning: Dealing with Data
Finding data that’s well-suited to train Machine Learning solutions isn’t as easy as it may sound. In this blog we will discuss best practices for managing data along with…
About Innotescus
We are a group of scientists, engineers, and entrepreneurs with a vision for better AI. With backgrounds primarily in Machine Learning and Computer Vision, the Innotescus team understands the importance of having full control over and insight into data used to train Machine Learning models.
For media inquiries, please contact: steve.szakelyhidi@innotescus.io