Is CV better than, worse than, or simply different from human vision?

Computer vision (CV) has made incredible strides in accuracy and applicability. Object classification, in many applications, can achieve 99% accuracy; this is up from 50% a decade ago. CV also can extract complex features in images to identify signs of disease in patients.

Object classification, in many applications, can achieve 99% accuracy; this is up from 50% a decade ago.

How can man and machine work together during image annotation to make Computer Vision training more robust?

Modern CV benefits from the availability of high-resolution image capture, fast data processing, and large training sets. This is what makes it excellent for tasks like medical imagery interpretation. Most CV models are built in a feed-forward neural network arrangement, in which pixel saturation/color values are first analyzed, then edges are identified, and so on until ultimately objects are classified. This makes them easy to engineer.

computer vision vs human vision

In contrast, the human vision system possesses limited resolution at the retina, and modest bandwidth from the optic nerve to the brains’ optical cortex. We’re not talented at picking out a hairline fracture in a manufacturing tool. However, people can build cognitive models of their environment and of new objectives with relatively few examples. In fact, scientists believe that humans reconstruct images in the brain, as much as they actually “see” them. Further, our neural networks contain feedback loops, allowing people to “refocus the lens.”

The cognitive capacities of the brain simply don’t exist in today’s CV AI models. This means that CV conclusions can turn out to be very wrong. Experiments have shown that, if one takes an image of a sloth and slightly adjusts the orientation of image elements, then a model could mistakenly interpret a sloth in a tree as being a race car on a track. Or a bunch of black wavy lines similar to a pear’s outline, could be interpreted as a group of penguins. Consider the implications of a “friend or foe” identification by a military drone.

Computer Vision must apply multi-modal AI to continue to advance

For CV to continue its growth, it will need to apply multi-modal AI, incorporating cognitive computing and semantic networks. Ultimately, there will be bots that engage with the world and combine vision, touch and a generalized representation of action-and-reaction, to interpret vision more like people do.

Video Annotation is required for better training data to next level model performance

  • Annotators will also become more involved in labeling meaning in videos. Adding motion information to imagery extends CV interpretation skills from objects to their actions, relationships and even cause-and-effect (“a dog is licking its owner’s knee, causing a ticklish reaction.”)

 

  • Data handled by annotators will expand from mainly 2-dimensional images to include 3-dimensional object representations. This will help overcome a weakness today, in which reorienting objects in an image can confuse the object classification model. For example, rotating a red octagonal STOP sign can cause it to be labeled as a barbell in a gym or as a tennis racket executing a slice shot. Annotation of 3-dimensional images will be combined with an ML technique known as “capsule networks,” which capture spacial relationships between parts of an object to improve and accelerate object classification.
object orientation - Innotescus
  • Annotation teams could become involved in prioritizing the importance of particular features in defining an image. This addresses the “brittleness” of current models, where small changes to secondary features undesirably shifts the model to a different classification space.
  • Finally, annotators should become familiar with “adversarial” ML modes, which explicitly learn to manipulate an image so that another model misclassifies it. While many adversarially created images will only be detectable by other algorithms, there will be cases in which human observation and insight will help defeat malicious use of AI.

Going back to the question, “Is CV better than, worse than, or simply different from human vision (HV)?” From the information gathered it is clear that CV is making breakthroughs in improving accuracy however, there is still an overarching challenge between humans and AI which seems to be the strong internal human interpretation bias. Analysis tools and extensive cross checks help to rationalize the interpretation of data and help put human bias into perspective. Read our blog post on how to reduce model bias.

Free EBook - resolve 5 common ML Data Cleaning Problems